

DOKTORITÖÖ TUTVUSTUS: The first study of voice and resonance related treatment outcomes of Estonian cleft palate children

LAGLE LEHES, PhD (arstiteadus)

Supervisors:

Assoc. Prof. Triin Jagomägi, DDS, PhD, Institute of Dentistry, University of Tartu Assoc. Prof. Marika Padrik, PhD, Department of Special Education and Speech and Language Therapy, Institute of Education, University of Tartu Priit Kasenõmm, MD, PhD, Ear Clinic, Tartu University Hospital

Defence: 19.10.2023

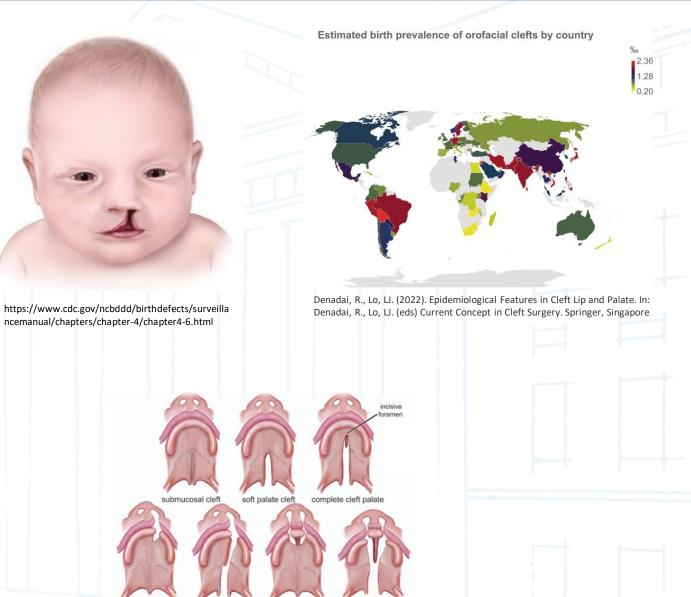
LIST OF ORIGINAL PUBLICATIONS

Lehes, L., Horn, R., Lippus, P., Padrik, M., Kasenõmm, P., Jagomägi, T. (2018). Normative nasalance scores for Estonian children. Clinical Linguistics & Phonetics, 32 (11), 1054–1066.

Lehes, L., Sõber, L., Padrik, M., Kasenõmm, P., Numa, J., Jagomägi, T. (2020). The effect of velopharyngeal insufficiency on voice quality in Estonian Children with Cleft Palate. Clinical Linguistics & Phonetics.

Lehes, L.; Aria, C.; Padrik, M.; Kasenõmm, P.; Jagomägi, T. (2023). Pilot Study: Correlation between nasalance scores and cephalometric parameters in Estonian cleft palate children. Stomatologija. Baltic Dental and Maxillofacial Journal, 2023, Vol.25, No.1

ORAL CLEFTS (OC)

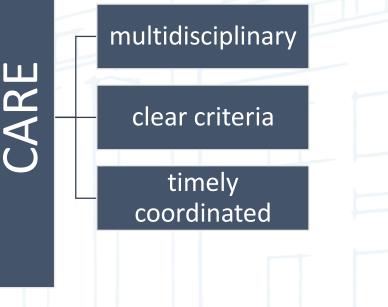

- common birth defect (1:700)
- approximately 70% non-syndromic

Prevalence varies according to

- ethnicity;
- gender;
- socioeconomic factors.

OCs are divided based on the extent of the cleft:

- cleft lip (CL) with or without primary palate;
- CL with or without cleft palate (CP);
- isolated cleft palate (CP);
- submucous cleft palate (SMCP).


unilateral cleft lip and primary palate unilateral complete cleft lip and palate bilateral cleft lip and primary palate bilateral complete cleft lip and palate

Swanson, J. W. (Ed.). (2021). Global Cleft Care in Low-Resource Settings.

CHALLENGES IN LIFE

Multiple problems:

- early swallowing and feeding difficulties;
- abnormal articulation, resonance, voice disorders;
- craniofacial growth deviance and orthodontic abnormalities;
- hearing loss and poor language acquisition skills;
- psychosocial issues and learning difficulties at school.

Appearance and speech seem to be mostly associated with increased emotional and social difficulties

One of the primary treatment goals in CP±L therapy is to achieve normal speech.

CLINICAL MANAGEMENT OF CP±L CHILDREN IN ESTONIA

Regionaalhaigla

 \mathbf{Q}

Minimal standardas for CLEFT TEAM:

- orthodontist;
- surgeon;
- otolaryngologist;
- speech and language therapist.

EUROCLEFT PROJECT

Table F.1 — Complete Cleft Lip, Alveolus and Palate (UCLAP and BCLAP)

Timing	Models	Lateral skull radiograph	Photographs	Speech	Audiometry/tympanometry
Primary surgery	V		\checkmark		
3 years				√a	û
5/6 years	V		√	~	√
10 years	V	1	√	~	√
18+ years	V	1	√	~	
^a If hard pa	alate is close	ed.		•	•

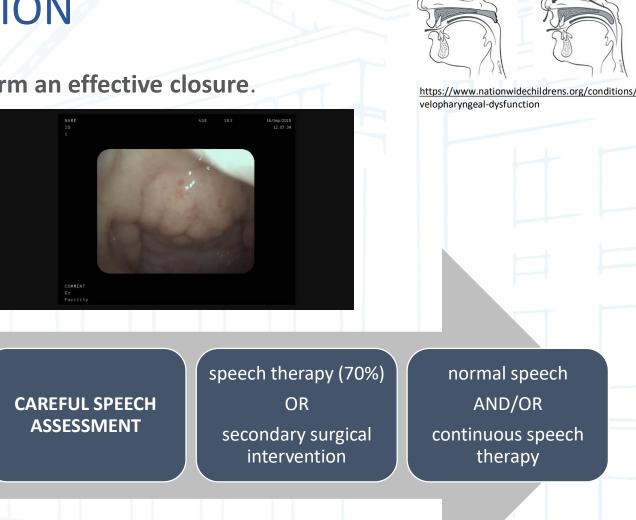
T	HT
Tartu University	North Estonia
Hospital	Medical Centre
Primary surgery:	Primary surgery:
1-stage palatal	2-stage palatal
repair	repair
procedur	ized care es based uidelines

http://europeancleft.org/wp-content/uploads/2016/02/CEN.pdf

VELOPHARYNGEAL DYSFUNCTION

AIMS

... soft palate and pharyngeal walls are unable to form an effective closure.


METHODS

Affects:

- resonance, speech sound errors, voice;
- eating, drinking (nasal regurgitation).

VPD in CLEFT PALATE population:

- shortened soft palate or its irregularity of the movements;
- severity (scale 0-4): pin-hole opening
 (1) to opening of entire VP port (4);
- 30-50% of individuals after surgical intervention

RESULTS

RATIONALE FOR THE INCLUDED STUDIES

- 1. Understanding the mechanisms of abnormal nasalance and voice disorders would considerably facilitate the work of multidisciplinary teams (surgeons, SLPs, otolaryngologists, orthodontists).
- 2. We need evidence-based approach, and objective thresholds.
- 3. Resonance and voice disorders in speakers of Estonian have not been described.
- 4. Nasalance score is an objective measurement of treatment outcome.
- 5. Velopharyngeal dysfunction may cause laryngeal voice disorders.
- 6. Craniofacial growth may impact speech quality.
- **7. Speech quality** and **apppearance** are major factors to be considered when describing the effectiveness of the treatment received by CP±L children.

INTRODUCTION AIMS METHODS

GENERAL AIM

The general aim of the study was to develop specific assessment protocols tailored to the Estonian speech and language and to describe the voice and resonance related treatment outcomes in Estonian cleft palate children.

SPECIFIC OBJECTIVES:

(1) to develop Estonian-specific optimised speech stimuli for Nasometer II and establish normative nasalance scores for Estonian (Paper I);

(2) to develop Estonian specific optimised speech stimuli for videonasoendoscopy and analyse the correlation between the severity of VPD and the severity of voice disorders (Paper II);

(3) to assess the voice quality and its impact on quality of life in Estonian children born with CP±L (Paper II);

(4) to determine the cephalometric parameters that distinguish the healthy group from the cleft-palate one as well as the cephalometric parameters that predominantly relate to resonance disorders (Paper III).

Approval (no. 263/T2) for the study was obtained from the Ethics Review Committee on Human Research of the University of Tartu prior to beginning the research.

INTRODUCTION AIMS		METHODS		5	RESULTS	CONCLUSIONS				
	Enrolm	nent	No. of s	ubjects	Methods and materials					
Study I	March 2015 – February 2017					Estonian stimuli for Nasometer II pilot study modification of speech stimuli normative nasalance scores				
Study II	Octobe Februa	er 2016 – Try 2017	18 CP±L 79 healt		acoustic and auditory-pe validation o stimuli for v	muli for VNE alysis of voice (MD' rceptual analysis o f pVHI questionnai ideonasoendoscop ideolaryngostrobo	f voice (GRBAS) re			
Study III	Septen March		11 CP±L 17 heat		lateral ceph nasalance so cephalomet	-				

METHODS

DEVELOPMENT OF ESTONIAN SPEECH STIMULI

24 utterances divided into three groups:

I. oronasal stimuli (ONS) (10% of nasal phonemes);

AIMS

- II. oral stimuli (OS) include only oral phonemes;
- III. nasal stimuli (NS) loaded with nasal phonemes (30% of nasal phonemes).

Examples:

INTRODUCTION

Isal on pikk habe. (ONS) (Daddy has a long beard.)

Kaja pugib kooki. (OS) (*Kaja munches on a cake*.)

Mamma pani akna kinni. (NS) (Granny closed the window.)

*Each stimulus group consists of eight utterances of at least six syllables each.

*Estonian is a highly phonetic language, i.e. each letter has one sound and is generally sounded consistently.

RESULTS

CONCLUSIONS

Language

OS

ONS

NS

Age

N

Authors

NORMATIVE NASALANCE SCORES FOR ESTONIAN (PAPER I)

										group				
a 1			60					Korean	Park et al., 2014	7-11 18-29	216	11.69	34.0 4	31
Speech	N	Μ	SD	M +/- 2 SD	Max	Min	CI	Greek	Okalidou et al., 2011	18-32	80	12.4	25.5	8.6
stimuli				cut-off score	s		(95%)	Dutch	Van der Heijden et al., 2011	4-6	55	11/13	27	11.6
					- 2		reard	Swedish	Brunnegård & van Doorn, 2009	4-11	220	12.7	29.5	12.9
ONS	HG92	30,5	5,8	18,9 – 42,1	56,3	19,5	29,2–31,6	Hungarian	Hirschberg et al., 2006	4-9	30	11	31.7	25
								English (Ireland)	Sweeney et al., 2004	5-7	70	14.16	26	11
	CP14	47.1						Flemish	Van Lierde et al., 2003	7-13	58	11.3	31.9	11.7
		\frown						English (Australia)	van Doorn & Purcell, 1998	4-13	245	13.1	- '	-
NS	HG92	(57,8)	5,8	46,2 - 69,4	72,0	41,7	56,6–59,0	Finnish	Haapanen, 1991	3-54	42	13.6		
			- , -					Vietnamese	Nguyen et al., 2017	7-9	106	13.0	30.7	56.9
	CP14	60.9						Brazilian Portuguese	Sampaio- Teixeira et al. 2019	6-35	62	18/18/21	-	•
OS	HG92	15,9	6,0	3,9 – 27,9	45,9	6,8	14,6–17,1	Chilean	Inostroza- Allende et al. 2022	18-35	76	14.15	25.3 8	52.13
	CP14	37.0						English (American)	Alfwaress et al. 2021	100	10-18 19-25	11.75/8.13	-	64/5 5
	0.11	0,10						Canadian French	Rochet et al., 1998	9-85	153	8.8-14.5	24- 30	33.4- 35.6

1) phonological quantity contrast does not affect nasalance scores on the sentence level;

2) nasalance scores were higher for the girls compared to the boys, the differences were not significant;

3) determination of cut-off values is essential for applying nasalance scores in clinical practice.

VOICE-RELATED QUALITY OF LIFE (pVHI)

- parents filled the questionnaire (score min 0 max 92)
- CP±L children scored higher in all subscales and in total scores;
- voice-related quality of life is significantly more affected in the CP±L group;
- results may be affected by resonance and articulation disorders.

	Group	N	Mean	SD	р
Functional	CP±L	18	6.56	3.714	
Functional	Healthy	79	2.99	2.844	< .05
Dhusical	CP±L	18	5.72	4.443	
Physical	Healthy	79	1.95	3.071	< .05
E	CP±L	18	5.06	4.820	
Emotional	Healthy	79	1.48	2.297	< .05
Total cooke	CP±L	18	17.33	11.209	
Total score	Healthy	79	6.42	6.725	< .05

ACOUSTIC ANALYSIS OF VOICE (MDVP)

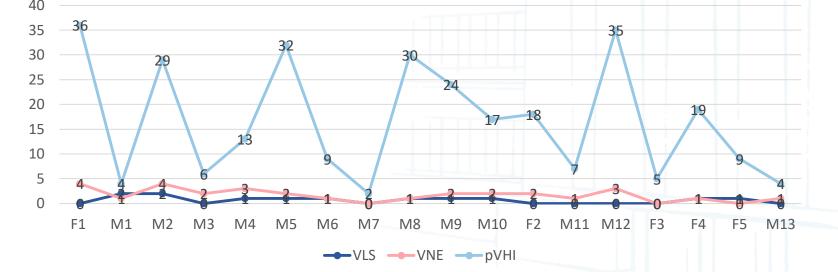
Acc. Par.	Group	Mean	р	
Fo	CP±L	285.09	0 21 4	
	healthy	273.25	0.314	
Jitter	CP±L	1.37	0.000	
	healthy	0.74	0.000	
Shimmer	CP±L	0.422	0.010	
	healthy	0.345	0.016	
NHR	CP±L	0.13	0.009	
	healthy	0.11	0.009	
ντι	CP±L	0.044	0.000	
	healthy	0.035	0.089	
SPI	CP±L	10.8	0 201	
	healthy	13.8	0.201	

- based on literature 6 accoustic parameters were compared;
- increased values of all parameters in CP±L group, decreased SPI;
- previous studies have demonstrated that jitter (frequency variation) is higher in children with VPD;
- jitter may be related to the presence of vocal nodules/oedema confirmed by our findings from VLS;
 - shimmer (amplitude variation) did not exceed the cut-off limits;
- increased values of the NHR was an expected outcome;
- CP±L children's voice appears pressed, hoarse and strained;

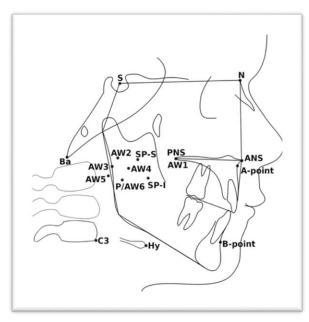
AUDITORY-PERCEPTUAL ANALYSIS OF VOICE (GRBAS-scale)

	G	R	В	Α	S
F (n=5)	1	.80	.60	.00	.40
M (n=13)	.85	.85	.77	.23	.38
TOTAL	.89	.83	.72	.17	.39

- 18 speech samples graded by 2 independent listeners (scale 0-3);
- inter-rater reliability *κ*=0.89;


COMPONENT		DESCRIPTION					
Grade G		Overall grade of hoarseness					
Roughness	R	Impression of irregularity of the					
		vibration of the vocal folds					
Breathiness	В	Degree to which air escapes from					
		between the vocal folds					
Asthenia	A	Degree of weakness heard in the voice					
Strain	S	Extent to which strain or					
		hyperfunctional use of voice is heard					

INSTRUMENTAL FINDINGS OF THE VELOPHARYNGEAL FUNCTION AND VOCAL FOLD FUNCTION


- 1. Videonasoendoscopy (VNE) (scores 0-4)
- 2. Videolaryngostroboscopy (VLS) (scores 0-2)
- **3.** Pediatric voice handicap index (pVHI)

VPD (large opening)

CEPHALOMETRIC PARAMETERS AND THEIR RELATION TO NASALANCE SCORES (PAPER III)

Lehes, L.; Aria, C.; Padrik, M.; Kasenõmm, P.; Jagomägi, T. (2023). Pilot Study: Correlation between nasalance scores and cephalometric parameters in Estonian cleft palate children. Stomatologija. Baltic Dental and Maxillofacial Journal, 2023, Vol.25, No.1

- cephs of 28 children were graded by 2 independent rater;
- inter- and intra-rater reliability was sufficient.

Ceph. parameter s	Participants	pants Dif. in par. (p< .05)		Cor. btw ceph.par. and ONS (CP±L)		Cor. btw ceph.par. And- NS (CP±L)		Cor. btw ceph.par. and OS (CP±L)	
			r	р	r	р	r	р	
PNS-A	CP±L (n=11)	0.02*	-0.52	0.05*	-0.45	0.08	-0.58	0.03*	
(mm)	Healthy (n=17)	0.03*							
Ну-СЗ	CP±L (n=11)	0.75	-0.64	0.02*	-0.45	0.08	-0.59	0.03*	
(mm)	Healthy (n=17)	0.75							
	CP±L (n=11)		-0.50	0.06	-0.64	0.02*	-0.54	0.04*	
ANB (≌)	Healthy (n=17)	0.31							
	CP±L (n=11)	0.55	-0.36	0.14	-0.57	0.03*	-0.27	0.21	
Ba-S-N	Healthy (n=17)	0.55			1				
	CP±L (n=11)	0.01*	-0.38	0.13	-0.39	0.12	-0.27	0.22	
PNS-P	Healthy (n=17)	0.01*							
AW5-AW6	CP±L (n=11)		-0.04	0.45	0.06	0.43	-0.08	0.401	
(mm)	Healthy (n=17)	0.04*							

CONCLUSIONS AND CLINICAL IMPLICATIONS

- 1. Most Estonian CP±L children exhibit both resonance and voice disorders quite expressively:
 - (1) nasalization is significantly higher compared to what is shown by healthy children,
 - (2) laryngeal voice disorders and morphological changes of vocal folds are common,
 - (3) craniofacial morphology differed compared to the norms.
- 2. We developed **Estonian-specific optimized speech stimuli for Nasometer II** and nasoendoscopic evaluation. Determination of cut-off scores for nasalalnce is essential for applying nasalance scores into clinical practice.
- **3. Velopharyngeal dysfunction** impacts the prevalence of voice disorders**. Laryngeal dysphonia is frequent** among CP±L children. Therefore, SLPs should include voice therapy in their everyday practice.
- 4. Changes in **craniofacial morphology may have an impact on speech quality**. These results are of practical use to multidisciplinary CP±L teams, especially orthodontists and surgeons.
- 5. Treatment of CP±L children is a teamwork. In older children, accurate speech assessment identifies children who require secondary surgical intervention or who benefit from speech therapy for optimizing speech outcome.

RESEARCH LIMITATIONS AND FUTURE

- 1. The principal limitation was the sample size. In Estonia, about 20 CP±L children are born every year.
- 2. Since the sample size was limited, the mean scores may have been artificially inflated or deflated.
- 3. In addition to the small sample size, the cleft palate group was very heterogeneous.
- 4. We should have instructed parents more thoroughly how to fill in the pVHI questionnaire.

We are in progress of creating a **National Registry** for CP±L children. We are planning a follow-up study.

ACKNOWLEDGEMENTS

All studies published in the thesis are based on teamwork and my sincerest gratitude and appreciation goes to:

- my supervisors associate professors Triin Jagomägi and Marika Padrik, and Dr. Priit Kasenõmm;
- my dear friends and colleagues Dr. Linda Söber and Merje Viigand;
- my co-authors: professor Pärt Lippus and and Dr. Van Thai Nguyen, and my former master students: Reet Horn, Jette Numa, Carina Aria;
- my organizational supporters: Mari Pärn, Evekai Usar, Anne Suluste;
- my reviewers: professor Mare Saag, Dr. Vitali Vassiljev, professor Arūnas Vasiliauskas;
- the staff members of the Cleft Team in North Estonia Medical Centre, in Unimed United Clinics, in Ear Clinic and in Rehabilitation Clinic of Tartu University;
- all included children and their parents;
- my family and friends.